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The structure of n-variable polynomial rings as Hecke
algebra modules
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Mathematics Department, City University, Northampton Square, London EC1V OHB, UK

Received 6 January 1993, in final form 9 August 1993

Abstract. We determine the stracture of the ring of n-variable polynomials as a module for
the Hecke algebra H,{(g) (g an invertible parameter). We show how to construct polynormnjal
bases for the g analogues of symmetrie group Specht modutes, fully generalizing the relevant
result of Davies ez al (on two representations in the Temperley-Lieb quotient).

1. Introduction

This paper is motivated by the need, illustrated particularly in section 6 of the important
recent work of Davies ef al [1] on the spectrum of the XXZ Hamiltonian, and by recent
interest in Hecke algebras and g-Knizhnik—Zamolodchikov equations from various authors
[2], for a brief ‘physicist digestible’ treatment of the structure of the ring of polynomials in
n variables as a Hecke algebra module.

Recall that if R is a ring then R[x] is the ring of polynomials in x with coefficients
in R, and R[x, y] = R[x][y]. Now let Z, = Zlg,qg 1 and let P = Zylzs, z2, ..., 20] be
the associated ring of polynomials in n independent variables. The generators {g;; { =
1,2,...,n — 1} of the unitary Hecke algebra H,(g) over Z, with relations

81814181 = &i+1818i+1
(i, g1=0 li—Jjl#1 (1)
(gi+qXg~g =0

act on the ring IP by 2 g-deformation of the action of the symmetric group 5, = H,(£1)
on the variables 71, 22, ..., z,. For f a function of z,22,...,2Z, and (i i+1) € §, let f©®
denote

f(n(zlvz%,"'!zi!;i'i'll""zﬂ)=(i f+l)f(ZI,Zz,---,ZE.ZHI.---,Z;:)

= f(thZv--'szi-l-lszis ---!zn)-
Then explicit computation shows that
- f =9
G+ f=@q " 'u- CIZi+1)——f-- (2)

@ ~ zi41)

defines an action of H,(g) from the left on the set of such functions [3,1]. If f € PP then
F = @ is a polyncmial with a zero at z; = zi4y, 50 (f — f@)/ (&t ~z:41) € Pand P is an
invariant subspace as an H,(q) module.

0305-4470/93/247311414507.50 (© 1993 JOP Publishing Ltd 7311



7312 P Martin
In this paper N denotes the set of non-negative integers, Let @ = (@), a2,....4a,) € N
and define |a| = 3, a;. Then a basis of P is the monomials
M={"=zf"...20:ac N}
Foranyi € {l1,2,...,n—1}anda e N" leto € N" be given by o; = @, (j #i,i + 1),
o; = w4 = min{a;, a;11}. Then from equation (2)
o (sign(a — @)%~ — gy
(zi — zi41)

(g +9)* =% —qzm)z

so factorizing

|ax+l-a|
(& +a)2° = (@72 — qu+1)2” (sign(a,- - am)( Z gl —ai=k f‘H‘))

' lappp—aif—-1 .
= sign(a,. __aH_l)zﬂ( --1 41— | + ((q ) E z‘!am.:—-a,l—— zik-H)
k=1

—gzli™ ') 3)

It follows, since |a| is the total degree of every monoemial in the expansion of the right-hand
side of equation (3), that as an H,(g) module
P= P
keN

where P* is the space of polynomials of order & (i.e. with elements homogeneous of degree
k).

Indeed for each j = 1,2,...,n the power of z; in each term on the right-hand side of
equation (3) is no greater than g;, so within P* the monomials z* with all g; < @ (Q € N)
span an invariant subspace, call it P*({2). Then we have inclusions of H,(g) modules

P*(Q) c PO+ 1).

In section 2 we analyse the structure of these modules. Many recent papers point to the
importance of Hecke algebra representations in exactly solvable models, knot theory and
conformal field theory {2,4]. It is well known how to construct irreducible representations
of H,(g) for g not a root of unity, but the usual constructions (first obtained by generalizing
Young's classical S, work by Hoefsmit {5], implicit in Andrews ef al [6] and subsequently
rediscovered by several others [7]) are not well defined at ¢ a root of unity. Indeed this
can be regarded as a signal of the change in the structure of the algebra at these points [8].
The more robust constructions of James and others [8, 9] solve this problem, but are very
difficult to implement in practice. One of the benefits of the present approach is that by
bringing in the idea of symmetric functions we can put the procedure into a manageable
state. This is done in the final section.

# N

2, Physical contexts

In [1] Davies et al give a scheme to diagonalize the one-dimensional XXZ spin chain
Hamiltonian
w :
Moz ==} 3 (O0fn0f +0l,,0f + £0F,0f) 4

k=-ro
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for the (anti-ferroelectric) region A < —1, using the representation theory of the gquantum
affine algebra U, (51(2)) where A = (g + ¢~ 1)/2. On a finite lattice with appropriate
boundary cond:ltlons the XX7 model can be built from reducible representations of Hecke
algebras. In such cases H commutes with an action of the ordinary quantum enveloping
algebra U, (si(2)) {13]. In the thermodynamic limit, as in equation (4), this Hamiltonian
formally acts on the infinite tensor product

W=...0CeCeC’eC'®C’®

(in the sense that the Pauli mamx o acts on the kth space C? here) and commutes with
the action of U (.s'I(Z)) C Uq(si(z)) on this spacet (see [1] for details, and see also the
continuum hrmt version—the su(2)-invariant Thirring model [10]). Davies et al [1] use
this commuting property to diagonalize the Hamiltonian (the technical issues are extensive,
and for complete details the reader should again refer to their paper—here we touch only on
the aspects germane to the present paper). In order to make their analysis rigorous Davies
et al [1] initiate a study of the » point correlators of vertex operators (certain intertwiners
of representations of U, (sl (2))) as n grows large. Frenkel and Reshetikhin [11] showed
that these correlators satlsfy a g-Knizhnik—Zamolodchikov equation. It follows indirectly
that these correlators provide bases for representations of a Hecke algebra, and in special
cases {small n) Davies et al [1] observe that these are polynomial bases generalizing some
well known symmetric group bases. They leave their result for large n as a conjecture and,
in any case, the appropriate generalizations were not previously known. They are given in
this paper in a seif-contained presentation.

This is of interest not only for the spectrum of the XXZ model itself (and its
interpretation) but also because of the scope for using the technique in more general models.
There are technical problems in each of these aspects. For a full explanation the reader
should turn to the original paper, but we may summarize them as (i) it is not known how
to generalize from 51(2) to sI(N); and (ii) there is ambiguity in the overall normalization
of vertex operators, leading to a convergence issue for their infinitely iterated application
(as in the thermodynamic limit). The results given in this paper provide the framework
for addressing both of these issues, as well as that of eigenvectors for XXZ and higher
vertex models in ather regions, This framework can also be used to study eigenvectors of a
suitable formulation of the Calogero—Sutherland-Moser model [12], which may be relevant
to the quantum Hall effect and high T, superconductivity, which we will discuss elsewhere.

We will show shortly that many physical models (arbitrary U, (sI(N))} spin chains, for
example) may be expressed in the form of the » site chain Hamiitonian

n—1
Hy(or, @, .oty = ) oala ™ 2 — qza) VO ®)
k=1

i Explicitly the action is defined in two stages: first a representation = Ué(ﬁ(Z)) — End(C?) is given by
representing the generators:

00 1 _
Jr(f(])_'ﬂ'{.fl)— ( 0) 7!'{81) =Jr(_f{,)= (g 0) ﬂ'(tl)—n’(f 1) _(g q(-)l)
and then the action of Uy (+((2)) on W is formally determined by the ‘infinite’ comultiplication

ANg) =3 .. L0681, ARy =3 elefier ..
keZ keZ

A =... 0L ®L®L....
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where the operator VI = [1 — (i { +1)]/(z; — 2:+1), the as are coupling constants, and the
Hamiltonian acts on some subspace of the formal space of functions of n variables z;. We
could attempt to consider the solutions to the general homogeneous problem

Hf =Ef

where H = Hy(e, o, ..., @), but this is not, as it turns out, physically sensible. The different
models mentioned correspond to restricting to quotients of different invariant subspaces
of the space of functions, and these subquotients yield different parts of the eigenvalue
spectrum. In the thermodynamic limit no single model sees the whole spectrum, thus it is
not sensible to trv to give the complete spectrum of H a unified physical interpretation. This
is an illuminating paradigm for the Calogero—Sutherland—-Muoser model [12] which is much
harder to solve but which has, in principle, a similarly nebulous function space (essentially
the same one, in fact, see [12]).

In this paper we will, however, fortuitously obtain several examples of eigenfunctions
of H (and even of (e, oz, ..., 0q—1))—the first, and simplest examples occur in
equation (18), for instance. These are already known via the Bethe ansatz [14], but our
representation theoretic derivation offers the possibility of an independent approach.

3. The structure of P*

We begin with some more notation: recall that a partition of a set A is any collection of
disjoint subsets A; whose union is A, and that each equivalence relation on A defines such
a partition.

On the other hand, for n € N, a partition of # is any list A = (A}, A2, ...) with each
A € N (usually &; > 0), 3, A =n and A; 2 Ay [15). If A is a partition of n we write
A n.

The depth of A b n is the unique index i such that A; > 0 but A,y # 0. The set of
partitions of n is 7,.

For X - n the conjugate A’ - x is defined by

A; = card{i : A 2 ).

Recall also the reverse lexicographic ordering of partitions of # given by A > u if the first
non-vanishing difference A; — i; is positive [15], This is a total ordering of partitions of .

Now for each ¢ € N* let us define p(a) as the partition of A ={1,2, ..., »} given by
the equivalence relation

i ~a j Hf a; = gj.
Then:
Definition I (Profile). For a € N" define the ‘profile’ of a, written p¢, as the partition of

n given by the list of orders of subsets in the partition p(a), i.e. p? = (JAy], |A2l, ..), with
subsets arranged so that |4;] 2 |Ais1]-

Definition 2 (Shape). The ‘shape’ of an a € N”, written a=, is the partition of |a| obtained
by permuting the elements of a (i.e. rearranging the {&;} ontil a1 2 a2 2 ...

We also say that z% has shape a". Note that for given n the depth of this partition 25
cannot exceed A,
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¢ = z{z3z3, the
4,4,2,0,0)

For example, with n = 5, consider ¢ = (4,5,1,0,0). Then z
b= (
(6,2,7,0,0) gives

shape of a is (5,4,1,0,0), Ja] = 10, and p° = (2,1,1,1). If
then the shape is (4,4,2,0,0), [b} = 10 and =022 ¢c=
H= (7,6,2,0,0), lc| =15, p° = (2,1, 1, 1),

Proposition 1. For any monomial z° the shape aU is greater or equal in the reverse
lexicographic ordering to the shape of any monomial in the expansion of g; z° (from
the right-hand side of equation (3)).

Proof. For each i there are three cases to consider:
For a; = g;41 then f — f@ =0,
For a; > a;41 then a; precedes a4;41 in @Y. The first basis state occurring on the
right-hand side (apart from z° itself), call it z2, has a partition of the form
e =(..,q—=1,...,a1q+1,...)

(as a partition the ith and (i + 1)th components of b may no longer be adjacent). Thus
a e B0, All subsequent terms are contained in g;z% and hence have shapes below a= by
the same argument, except (..., &1, - - -, 4, . . .} Which is identical to a up to permutation.

For a; < a;1 similarly. » |

It follows that P has a sequence of invariant subspaces as a left H,(g) module. For
A b i let P* be the space of polynomials of shape A (for # = 3,i = 3 the space P@10 jg
spanned by

2 2 2 2 .2
{2122, 2073, 2123, 2123, 2323, ZZZ:?}

for example), and let

Pi=P+ ) P~ @)

(i sn parl
For example (with { € n)
P =P PP = pA 4 PO,
Then:
Proposition 2, For A, ptiand Aot
PicP, cP
are inclusions of left H,(g) modules.
For i < n we have left H,(g) module inclusions
PO c PP P e cPEC P ¢ ... C P

Fori > n with i = nm+k (m, k € N) then the smallest invariant subspace in this filtration
is P with

w = ((m+ 1)¥, m"*).
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m-n/(%e)

Then P* is an H,(g) module, while P*, which can have the same basis (and is isomorphic
to P* as a vector space), is not an H,(g) module in general. For example P99 pas basis
{x3, x3, x3}, as does P>®9, but the latter is not closed under the action of H,(g).

Then in P* all but the first and last terms in the bottom line of equation (3) can be
ignored and we have

_gz(---.di.af+1...-) a; = @44
giz(....aJ.a;+|,...) = (q—l _ q)z(,..,a.-.m.,.l.,..) _ qz(....a1+,.a;....) a; > ais (8)
_q—lz(--..a.'u.di,---) a; < iy

Note that within IP* the space induced by the action of the generators on a single z¢ is
spanned by monomials of the form zP®), where p(a) is a permutation of the elements of
a, (i.e. all monomials of the same shape) and this space is the whole of P*. Thus

dim(®) = )

nl
TLWMD

Note that we can write the basis states in terms of the action of the generators on a
“Jowest’ state z° of shape A defined by ¢; < €;4y. Recall the partial order on N* defined
[15] by a = b if

4

Za; p- Zb" for all j.

I
=1 i=1
Then —gg:z® = z¢ 9 for (i i + 1)) > b.

Proposition 3. As H,(g) modules P* = P* if p* = p*.

For example: PC-64D = Pp®73.2) since if n = 4 then p = (1, 1,1, 1) in both cases; if
n = 6 POS4LOD ~ pBT3.200) gimilarly since p = (2,1, 1, 1, 1) in both cases, and so on.

Proof. Consider the specialization g = 1. Then in their monomial bases P* and P¥ induce
representations identical up to permutation of basis states. This is also true generally if

(it > X} ={i: > pisa}

{e.g. for (2,2,0) and (1, 1,0), but not for (2,2,0) and (1,0,0)). In other cases the
representations are not identical, but the proposition follows by continuity with the g = 1
specialization as follows.

Recall that the specialization of H,(g) to ¢ = 1 is the group algebra of the symmetric
group—a semi-simple algebra with dimension nl. Any element in the radical of H,(g)
must either vanish or again be in the radical of any specialization. Since H,(g) is alsc of
dimension »! [18) then rad(H,{g)) is empty. Now suppose {R;} is a set of representatives
of equivalence classes of irreducible representations of H,(g)—so ¥, |Ri{* = n!. If any
such irreducible specializes to a reducible representation then some dimensions are lost,
therefore specialization is an isomorphism of classes of irreducibles. Thus the irreducible
content at ¢ = 1 determines the H,{g) irreducible content. r
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Note that shapes of different degree may have the same profile {e.g. forn =3 (7, 1,0)
and (3,2,1) are both p* = (1,1,1)). There is a unique representative shape in each
isomorphism class of minimum degree given by
A=(d-1,d-1,...,d-1,d~-2,d-2,...,

d-2,d-3,...,d-3,...,,1,...,1,0,0,...,0) (10)

where d is the depth of p* and
card{i : A; =k — 1} = (p*)

(s0 ]\l = 39, G — 1).00).
We will also define a standard representative shape v for each class by

card{i : v = k} = (0")g—s. (11)

We will see in the next section that the action in equation (8) (for A a standard
representative shape) is identical 1o the action of the generators on a p* g-permutation
module [8], which is in turn a block of the si(n) vertex model representation of H,(g)
(116, 17] and see review below). The generic irreducible content of such a block is known
[18], being given by the Littlewood-Richardson rules [15]. Serendipitously we will be able
to rederive this resuit in a relatively simple way.

4. Polynomial bases for Specht modules

Recall the (unnormalized) g-symmefrizer and g-antisymmetrizer in H,(g):

Y= @ "G6w) (12)
wes,

Y= (—q)"G(w) (13)
wesy

where G(5,) is the basis of H,(g) obtained by writing each w € §, as a word of minimal
length ({{w)) in permutations (i i + 1) € S, and then replacing (i i 4 1) — g;.
These have the properties

2
(Yna) = [n]+!¥,° (14)

(where [n)s! = [T'_, (1 — g¥¥) /(1 — ¢¥%)) and

5 3

g ¥y? = q¥1Y,2. (15)

Proof of eguation (15). First consider some g; acting on an arbitrary summand of Y3,
There are two cases to consider—either g;G(w) is of minimum length (and is given by
G((i i + 1)w)); or the relation g2 = (¢~ — g)g; + 1 can be used to shorten it:

(g7t~ GW) + G((E i + Dw) WG i+ Dw) = H(w) — 1

- ng(w)={G((i i+ Duw) HE i+ Dw)y=iw)+1
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so overall the coefficient of G(w) on the left-hand side of g;¥? is again one of two cases—
either the coefficient comes from shostening some w’ (hence g~*®~1) or from lengthening
w’ plus leaving alone w:

gm0 —g) NG i+ Dw) = Lw) - 1
g -t G i+ Dw) =Hw)+ 1
and similarly for the antisymmetric case. 0
There is a duality between the roles of the two types of operator (under ¢ « —g™1),
and in fact the normalization we have chosen causes them to exchange their normal roles
in the ¢ = I Fmit.
Proposition 4. For (ij) € 8, and f a function of # variables such that f = (ij) f, then
Y F =0,
Proof. 1t is sufficient to prove that (i { +k)f = f implies ¥; f = 0.
We proceed by induction on k. First suppose f = f@, then
- (1 @
@ +7 = Ve "0

This establishes the case k = 1 (strictly speaking only for g # =i, although these cases can
also be dealt with).

Now assume that f = (i i +m)f implies ¥Y* f =0foralli andallm=1,2,...,k—1.
Note that if f = (i i + k) f then

F=W@i+DE+1i+0GE i+ =i+ DEF1I+REI+D)F
and hence
GitDf=G+1i4+kG i+
50 ?en (I)F,f((i i+ 1) f) = 0 by assumption. But similarly Y3(f+ (¢ i+ 1)) =0, s0 ﬁnaIIl%/I
Yif =0

Writing f = z“ then if two exponents 4;, a; are the same (i) f = f, so

Proposition 5. Fora € N*
Yiz°=0 unless p°® = (17).
That is, ¥IIP contains fo momomial in which two exponents a;, a; (say) are equal,

In particular, ¥:P' = 0 unless { > n{n — 1)/2. Now consider YSP*"~1/2, First
Y7 =1-gg so

Yiz = g%z + 22)
and so

81(z1 +22) = —q(z1 + 22) (16)
and

gt —g*n) =g (@ — ¢’n). an
This leads us to form:
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Definition (g-Vandermondians}. The g-Vandermondians [15] are
Vi = [] @Fea™*'z)= V,.*_I(q)(ﬁ(zf :Fqlﬂzn))'
I<i<j<n i=1
These definitions with equations (16) and (17) give
& V@) = 247 Vi) (18)

Note that V(g) e P~1"2+0 ¢ pri-1/2, For example, the first term in the monomial
expansion of VE(g) is 2712 2... z,—1 (i.e. profile (17)). Note also that as left Hn(q)
modules

Zg¥r® = Z,VE(g). 19

Whereupon we have:

Corollary 5.1. Forkznleth=(k—1,k—2,...,k~n), then as a left H,(g) module
"
v =z, V,;"(q)(nzf"")- 20)
i=1

Proof. For some z° of shape X let us write X = ¥3z° € P, By proposition 4
Yi(1+ (N =0

- so for b any {evenfodd) permutation of &

Y,‘:zb =X,

By proposition 5 ¥3z° = 0 for ¢= < A, since shapes of depth < n which are lower than A
in the total order (of partitions of n(k — n) + n(n — 1)/2) must bave at Jeast two exponents
equal. Thus

VP =Z,X.

But V+(g)(TTi; 25" & B, (consider k = #) and, comparing the coefficients of maximum
degree in the first » variables in ¥3V;*(g) = [n]+!V; (g) we get

A (q)(]_[ zﬁ“") = [n]: 1V} (g) ( I z‘g—n) _
=1 =1
[(m]
Further:

Definition 4 {Diagrams for Vandermondians). More explicitly VE(q) = V& (g, 21,22, - -+
z) and then the tablean Vandermondians are
+
! = Vk+(Q'q Zm+1s Tpet2s +o» zm-i-k)
B

[malmefme] ... Im#]” = Vi(q, 2mits Zmeds o Zmakd
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and similarly
mi|laic 4 + m + alc¢ e +
: fl = X f
mik| b | d m bild
and
a B -
: - = A T
miy. |m
and so on.

Definition 5 (Tableau symmetrizers). Similarly, diagrams as above but with superscripts
&+ replaced by a,s denote the elements of H,(g) obtained by replacing the tableau

5

Vandermondians with the corresponding ‘translated’ (anti)symimetrizers, i.e. Vni {g) > Y.2.

For example,

[3[4] =1-gs.

Let us review the construction of g-pertutation blocks and Specht modules [9]. In
order to do this we need to define some more special elements of H,(g). Let 4 + n have
depth 4] = d, then with A} the product of symmetrisers defined by

A—phpH prp 2] e - R ]u
At = ! @1)
Hatl | prg42) - Mt fham
1 2 e | Mg

we have:

Definition 6 {gq-permutation block [9, 18]). The left module P, = Hy{(g)A} is the g-
permutation block associated with wu.

Proposition 6. As left H,(g) modules, P, is isomorphic to P* in case the profile of X is
o =g

Proaf. The induced representations are identical in a canonical basis [18] if A is standard.
In particular compare equation (8) (for the lowest state) with equation (21).
Let Aj, be the product of symmetrisers defined by

1w .., n]s
AR

A:‘-T- . : {22)
] -

(in the illustration u] = p}, of course this need not be true in general) and let Aﬁ be the
tableau Vandermondians obtained from the tableaux in equations (21) and (22) respectively,
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Definition 7 (g-Specht module [8, 9, I8]). The left module H, (g)A}, P, is the g-Specht
module associated with .

Each such module is a simple H,(g) module as we will see, and well defined in any
specialization. Now by proposition 5:

Proposition7. For ubn

Az =0 (23)
unless (o) & p'. Further, if ¢ is of minimal degree for profile p¢ (equation (10)) then
2% X A%, (24)
that is
AgalP} =Zy AT, (25)

and if the shape of ¢ is standard (equation (11)) then
ALz o AL (]‘] ( ]‘[z ) 6)
i=1
that is
ASPS = (H (Hz‘"l)). @n
j=1
Note that equation (23) uses an ordering on profiles (cf the ordering on shapes in

proposition 1).

Proof. Explicitly

5
#y+1
A% = (Y;'z(ﬂl‘ﬂz.--,a,"’ ,ﬂ,ﬂ,...,O)) . . Z(O.O..-..O.ﬂ,,_fl.,.!.au-i“ ..... By
1 .

it

Let the depth of p* be (p%)] = d. In order for the first factor on the right-hand side to be
non-vanishing the exponents must be some permutation of 4] distinct numbers chosen from
the d distinct exponents. If d < y; this is not possible. If d > g} then (%) > 4’ and there
is nothing to prove. Note that if the exponents are a permutation of {0, 1,2,..., u} — 1}
then the factor is proportional to V;E by corollary 5.1.

It remains to consider the case d = ). Suppose that the first factor is in fact nom-
vanishing. In order for the second factor to be non-vanishing the exponents there must be
some permutation of u} distinct numbers. Since we have already factored out ] distinct
exponents we have an effective profile obtained by deleting the first column (in the diagram
sense) from p®. Thus the distinct exponents must be chosen from (o?); possibilities. If
{p®)y, < 4, this is not possible. If (), > w5 then (p%) > 11’ and there is nothing to prove.
If the exponents are a permutation of {0, 1, 2, ..., #; — 1}—the minimal degree case—then
the factor is proportional to Vu-z (appropriately translated) by corollary 5.1. If the exponents
are a permutation of {,u. ~ b, ..., p] — 2, ) — 1}—the standard case—then the factor is

proportional to V' (1—[]_, 7;) (translated by z; — z;4,;) by corollary 5.1.
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In general if (p%), = u} we must consider the third factor similarly, and so on. Iterating,
we obtain equations (23), (24) and (26).

Finally, consider the action of A%, on a monomial z? (say) in P4, of shape lower than aU
in the total order (in the case of a of minimal degree for its profile). Then the multiplicity of
some exponent is lower in  than in g, but since at minimal degree every exponent between
this one and zero is represented, the multiplicity of some lower exponent is necessarily
higher in 5. Correspondingly at some factor there will not be enough distinct exponents in
b, giving Aizb = {. Equation (27) follows similarly, O

It is praved in [18] that Af,f',,I is one-dimensional for any g + n. In general if
X, Y € Hy{(g)and XH,(g)Y is one-dimensional then H,(g)X H,(g}¥ is an indecomposable
left module [19], hence the Specht module H,AJ P, is a generic irreducible left module
{distinct for each u, with P, giving a complete set of irreducibles up to equivalence). It then
follows from proposition 6 that for each A the space A;‘P’; is one-dimensional (and this is
confirmed explicitly in the mimimum degree and standard cases by proposition 7, since P*
is a quotient of P}_)T. Thus A}Pﬁ generates a polynomial basis for the corresponding left
Specht module—as indeed does A‘;L]Pﬁ_ in minimum and standard cases. By equation (25)
the polynomial A, in particular generates this basis. For example

A{z..)=( n (zz—qzz,-)) n (@ — 2°z)- (28)

isf<jsm mA1gi<j<m

Similarly

Abuyy = ( T @-4% @ ~9°%). (29)

1gi<f<m+] )m+2$.5<j$2m+l

An isomorphic representation is induced using A}, |, [T22+, 2 (from equation (27)),
reproducing (with equation (28)) the two examples found by Davies et al [1]. Equivalently,
note for example that @ = (3,3,2,2,1,1,0) and (3,2,2,1, 1,0, 0) have the same profile
(.e. (2°, 1)), and that in both cases there are no shapes lower in the total order with profiles
higher {or equal) in the total order of their conjugates.

More generally, for example

Aém)=( [l (Zi"qzzf))( § (Z:‘—qzzj)) [ @-d% (30)
Igi<jgm m+ 1€ <j52m Zm+1€i<ig3m

and so on.
A complete basis is generated from A;’; by acting with {g;} as in the following example.

We consider p* = (23, 1) and write (ij ... k) for gig; ... gkAj,L Then a basis is

RERM 174" 113"

216 2|6 2|6
S @ =t (34 =71

|4 ] El S

t A straiphtforward generalization of the proof of proposition 7 establishes that the Littlewood-Richardson rules
for the Specht module content of permutation blocks {9, 15] continue to apply on generalizing from g =l to g
indeterminate.
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114" 174" 173" T2
213 2715 {275 _[37s
(54) = =1 {654) = T (354) =115 (234) =3 5
[ 6 [ 7] 6] El
NERN 11zt NERN
A 35 215
(“354) === (2354) = (6534) = 13
.6 6] XA
112 T3t 1121
34 2|4 316
(24354) = | o= (64354) === (26354) =
(6] 7] el
1121t
314
(246354) ===
7]

Finalty, the alpebra H,{g) is isomorphic to its opposiie {see the defining relations), so
an action from the right may be defined similarly to equation (2). Note that, in particular,
P can be regarded as a left or right H,(g) module, but it is not a bimodule. For example,
in the S, case

(I2)21(23) = (1221 = 22 but ((12)21)(23) = 22(23) = zs.

We have determined the structure of the ring of n-variable polynomials as a Hecke
algebra module by identifying various submodules with Hecke modules of known structure.
Our new realization of these (g-permutation) modules has enabled us to rederive their
structure in a relatively simple way, and in particular to construct polynomial bases for all
irreducible (g-Specht) modules.
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