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The structure of n-variable polynomial rings as Hecke 
algebra modules 

Paul Martin 
M a t h e d c s  Department, City Universig. NoIthampton Square, London EclV Om, UK 

Received 6 January 1993, in final form 9 August 1993 

Abstrad We determine the stmcture of the ring of n-variable polynomials as a module for 
the Hecke algebra H,(q) (q an invertible parameter). We show how to coostrud polynomial 
bases for the q analogues of symmetric group Specht modules, fully generalizing the relevant 
result of Davies et al (on two representations in the Temperley-Lieb quotient). 

1. Introduction 

This paper is motivated by the need, illustrated particularly in section 6 of the important 
recent work of Davies ef aI [ I ]  on the spectrum of the XXZ Hamiltonian, and by recent 
interest in Hecke algebras and q-Knizhnik-Zamolodchikov equations from various authors 
121, for a brief 'physicist digestible' treatment of the structure of the ring of polynomials in 
n variables as a Hecke algebra module. 

Recall that if R is a ring then R [ x ]  is the ring of polynomials in x with coefficients 
in R ,  and R [ x ,  y ]  = R [ x l [ y ] .  Now let Zq = Z[q,q-'l  and let P = Z q [ z l , a . .  . . ,&I be 
the associated ring of polynomials in n independent variables. The generators { g i ;  i = 
1,2, . , . , n - 1 1  of the unitary Hecke algebra H,(p)  over Zq with relations 

act on the ring P by a q-deformation of the action of the symmehic group S. 2 H,,(fl) 
on the variables ZI, 22,  . . . , z". For j a function of 21. zz ,  . . . , z, and (i i + 1 )  E S, let j"' 
denote 

~ " ' ( z I .  2s.. . . , w. 3 + 1 , .  . . , z,) = (i i + I ) f ( z i ,  a.. . . , zi. a+]. . . . , zn) 

Then explicit computation shows that 

- 
= f ( z 1 ,  z z . .  . . , zi+l. zi. . . . , Z"). 

defines an action of H,(q)  from the left on the set of such functions [3 ,1 ] .  If f E P then 
f - j") is a polynomial with a zero at zi = zi+~. so ( j  - j " ) ) / ( z i  - % + I )  E P and P is an 
invariant subspace as an H,(q)  module. 

0305-4470193/247311+14$07.50 @ 1593 IOP publishing Ltd 7311 



7312 P Martin 

In this paper N denotes the set of non-negative integers. Let a = (a1,  a2, . . . , a.) E N" 
and define la1 = c k a k .  Then a basis of IP is the monomials 

M = [z" = z f  .. . z 2  :a E pa"]. 

For any i E {I, 2, . . . , n - 1) and a E N" let (Y E N" be given by (YJ = aj ( j  # i, i + I), 
ai = ( Y ~ + I  = min{ai. ai+l}. Then from equation (2) 

so factorizing 

It follows, since la1 is the total degree of every monomial in the expansion of the right-hand 
side of equation (3), that as an H,&) module 

P = @ F  
k E N  

where p is the space of polynomials of order k (i.e. with elements homogeneous of degree 
k). 

Indeed for each j = 1.2,. . . , n the power of zj in each term on the right-hand side of 
equation (3) is no greater than aj, so within L@ the monomials z" with all a, < Q ( Q  E N) 
span an invariant subspace, call it F(Q). Then we have inclusions of H.(q) modules 

P(Q) C F(Q + 1). 
In section 2 we analyse the structure of these modules. Many recent papers point to the 

importance of Hecke algebra representations in exactly' solvable models, h o t  theory and 
conformal field theory [2,4]. It is well known how to construct irreducible representations 
of H.(q)  for q not a root of unity, but the usual constructions (first obtained by generalizing 
Young's classical S,, work by Hoefsmit [SI, implicit in Andrews er al [6] and subsequently 
rediscovered by several others [7]) are not well defined at q a root of unity. Indeed this 
can be regarded as a signal of the change in the strucme of the algebra at these points [8]. 
The more robust constructions of James and others [8,9] solve this problem, but are very 
difficult to implement in practice, One of the benefits of the present approach is that by 
bringing in the idea of symmetric functions we can put the procedure into a m2nageable 
state. This is done in the final section. 

2. Physical contexts 

In [I]  Davies et ~l give a scheme to diagonalize the one-dimensional X X Z  spin chain 
Hamiltonian 

0 
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for the (anti-ferroektric) region A -= -1, using the representation theory of the quantum 
affine algebra Uq(sZ(2)), where A = (q + q-')/2. On a finite lattice with appropriate 
boundary conditions the XXZ model can be built from reducible representations of Hecke 
algebras. In such cases 'H commutes with an action of the ordinary quantum enveloping 
algebra U9(sl(2)) [13]. In the thermodynamic limit, as in equation (4). this Hamiltonian 
formally acts on the infinite tensor product 

w = . . .@ cz @ C2@ C2@ C2@ C 2 @ .  . . 
(in the Sense that the Pauli matrix U: acts on the kth space C2 here) and commutes with 
the action of Ui(Z(2)) c Uq(2(2)) on this spacet (see [I] for details, and see also the 
continuum limit version-the su(2)-invariant Thi ing  model [IO]). Davies et aZ [l] use 
this commuting property to diagonalize the Hamiltonian (the technical issues are extensive, 
and for complete details the reader should again refer to their paper-here we touch only on 
the aspects germane to the present paper). In order to make their analysis rigorous Davies 
et a1 [l] initiate a study ofthe n point correlators of vertex operators (certain intertwiners 
of representations of U9(s1(2))) as n grows large. Frenkel and Reshetikhin [ll] showed 
that these correlators satisfy a q-Knizhnik-holodchikov equation. It follows indirectly 
that these correlators provide bases for representations of a Hecke algebra, and in special 
cases (small n) Davies et al [ 11 observe that these are polynomial bases generalizing some 
well known symmetric group bases. They leave their result for large n as a conjecture and, 
in any case, the appropriate generalizations were not previously known. They are given in 
this paper in a self-contained presentation. 

This is of interest not only for the spectrum of the IMZ model itself (and its 
interpretation) but also because of the scope for using the technique in more general models. 
There are technical problems in each of these aspects. For a full explanation the reader 
should hull to the original paper, but we may summarize them as (i) it is not known how 
to generalize from sl(2) to s l (N) ;  and (ii) there is ambiguity in the overall normalization 
of vertex operators, leading to a convergence issue for their infinitely iterated application 
(as in the thermodynamic limit). The results given in this paper provide the framework 
for addressing both of these issues, as well as that of eigenvectors for X X Z  and higher 
vertex models in other regions. Thii framework can also be used to study eigenvectors of a 
suitable formulation of the Calogero-Sutherland-Moser model [12], which may be relevant 
to the quantum Hall effect and high Tc superconductivity, which we will discuss elsewhere. 

We will show shortly that many physical models (arbihary U,(sZ(N)) spin chains, for 
example) may be expressed in the form of the n site chain Hamiltonian 

"-1 

(5) Hv(a1,az.. . . , a n - - l )  = Cat tq- ' zr  - qzr+dV (k) 
k=l 

t Explicitly the action is defined in two srages: first a represenration z : Ul(a(2))  + End(C') is given by 
representing the genemtors: 
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where the operator V ( i )  = [ 1 - (i i + l)]/(zi - z i+ l ) ,  the as are coupling constants, and the 
Hamiltonian acts on some subspace of the formal space of functions of n variables zi  . We 
could attempt to consider the solutions to the general homogeneous problem 

'Flf = E f  

where 'H = 'Flv(or, or, . . . ,a), but this is not, as it t u n s  out, physically sensible. The different 
models mentioned correspond to restricting to quotients of different invariant subspaces 
of the space of functions, and these subquotients yield different parts of the eigenvalue 
spectrum. In the thermodynamic limit no single model sees the whole spectrum, thus it is 
not sensible to try to give the complete spectrum of 'H a unified physical interpretation. This 
is an illuminating paradigm for the CalogeroSutherland-Moser model [12] which is much 
harder to solve but which has, in principle, a similarly nebulous function space (essentially 
the same one, in fact, see [121). 

In this paper we will, however, fortuitously obtain several examples of eigenfunctions 
of 'Fl (and even of 7&(a1,orz, ..., an-1))-the first, and simplest examples occur in 
equation (18), for instance. These are already known via the Bethe ansatz [14], but our 
representation theoretic derivation offers the possibility of an independent approach. 

3. The structure of lPk 

We begin with some more notation: recall that a partition of a set A is any collection of 
disjoint subsets Ai whose union is A, and that each equivalence relation on A defines such 
a partition. 

On the other hand, for n E N, a partition of n is any list A = (AI,  Al.. , .) with each 
Ai E N (usually hi > 0). xi hi = n and Ai > A;+l [15]. E A is a partition of n we write 
h F n. 

The depth of A k n is the unique index i such that Ai t 0 but A ~ + I  # 0. The set of 
partitions of n is 'P.. 

For A I- n the conjugate A' I- n is defined by 

A:: = card{i :hi > j ) .  

Recall also the reverse lexicographic ordering of partitions of n given by A D  f i  if the first 
non-vanishing difference Ai - p; is positive [15]. ?his is a total ordering of partitions of n. 

Now for each a E N" let us define p ( a )  as the partition of A = {l ,  2, . . . , n) given by 
the equivalence relation 

i -,, j iff ai = aj. 

Then: 

Definition I (Profile). For a E Nn define the 'profile' of a, written p a .  as the partition of 
n given by the list of orders of subsets in the partition p(a ) .  i.e. p a  = (IAll, IAzI, ..), with 
subsets arranged so that IAiI > IAi+ll. 

Definition 2 (Shape). 
by permuting the elements of U (i.e. rearranging the (ai] until U I  2 az 2 . . .). 

The 'shape' of an a E N", written an, is the partition of la1 obtained 

We also say that z" has shape a'. Note that for given n the depth of this partition U' 
cannot exceed n. 
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For example, with n = 5, consider a = (4,5,1,0,0). Then z" = Z;Z:Z~, the 
s h a p e o f a i s ( 5 , 4 , 1 , 0 , 0 ) , ~ a l  = 1 0 , a n d p a = ( 2 , 1 , 1 . 1 ) .  I f b = ( 4 , 4 , 2 , 0 , 0 )  
then the shape is (4,4,2,0, O), Ibl = 10 and pb  = (2,2,1); c = (6,2,7,0,0) gives 
CO = (7,6,2,0,0), IcI = 15, p c  = (2,1,1,1). 

Proposition 1.  For any monomial z' the shape an is greater or equal in the reverse 
lexicographic ordering to the shape of any monomial in the expansion of gi z' (&om 
the right-hand side of equation (3)). 

Proof. For each i there are three cases ta consider: 
For ai =ai+] then f - f") = 0. 
For ai > ai+l then ai precedes ai+l in a'. The first basis state occuning on the 

right-hand side (apart from z" itselof), call it zb, has a partition of the form 

bo = (. .. .ai - 1,. . . , ai+i + 1.. . .) 
(as a partition the ith and (i + 1)th components of b may no longer be adjacent). Thus 
an D bo. All subsequent terms are contained in gizb, and hence have shapes below an by 
the same argument, except (. . . ,ai+,, . . . ,a i , .  . ,) which is identical to a up to permutation. 

13 For ai c ai+] similarly. 

It follows that has a sequence of invariant subspaces as a left H,(q) module. For 
i; t- i let P be the space of polynomids of shape i; (for n = 3, i = 3 the space W2J*') is 
spanned by 

2 2  2 2 2  
( z I z 2 ,  z1z31 LIZ21 Zlz3,Z2Z3r z2Z:l 

for example), and let 

%=P+ P&.. 

p p  = p(l9 

I&:&;<" Ira1 

For example (with i < n) 

PI'-2) = P(21'-*) +@I?. p+ 
Then: 

Proposition 2.  For h,  I.L I- i and h D I.L 

P: Clr$ s P' 
are inclusions of left H,(q)  modules. 

For i < n we have left H.(q) module inclusions 

IF$') c P y )  c Py4) c . , . c P$ ,c P p )  c . . . c Pi. 
For i > n with i = nm + k (m,  k E N) then the smallest invariant subspace in this fillration 
is P with 

o = ((m+ I)', mn-'). 
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Let 

Then p- is an Hn(q) module, while p, which can have the same basis (and is isomorphic 
to E as a vector space), is not an H.(q) module in general. For example P!!'o~o) has basis 

Then in E all but the first and last terms in the bottom line of equation (3) can be 
[xl, 3 3 3  x 2 ,  x3). as does pO.O.o), but the latter is not closed under the action of H,(q). 

ignored and we have 

ai = aj+l 

a; > ai+l (8) 
ai   ai+^. 

,... ) - qz(....a~+,.a; ,... ) 

Note that within Py the space induced by the action of the generators on a single z' is 
spanned by monomials of the form zP@), where p(a)  is a permutation of the elements of 
a, (i.e. all monomials of the same shape) and this space is the whole of Thus 

Note that we can write the basis states in terms of the action of the generators on a 
'lowest' state zc of shape A defined by e; < ei+l. Recall the partial order on N" defined 
[I51 by a ? b if 

i I 

i=1 i=l 
c a t  > Cbi for all j .  

Then -qgizb = z((j i+l)b)  for ((i i i 1)b) > b. 

Proposition 3. As H,(q) modules P! Z PE if p A  = p". 

For example: P'9.6.4J) g lF"8~7*3~2) since if n = 4 then p = (1. 1, 1, 1) in both cases: if 
n = 6 P(9*6348'90t0) Z P(8*7*3*2f0t0) similarly since p = (2, 1, 1, 1, 1) in both cases, and so on. 

Proox Consider the specialization q = 1. Then in their monomial bases F! and P! induce 
representations identical up to permutation of basis states. This is also true generaUy if 

[i : Ai >Ai+, )  = [i : p; > pi+lJ 

(e.g. for (2.2,O) and (1, 1,O). but not for (2,2,0) and (1,0,0)). In other cases the 
representations are not identical, but the proposition follows by continuity with the q = 1 
specialization as follows. 

Recall that the specialization of H,(q) to q = 1 is the group algebra of the symmetric 
group-a semi-simple algebra with dimension n!. Any element in the radical of H.(q) 
must either vanish or again be in the radical of any specialization. Since &(q) is also of 
dimension n! [I81 then rad(H.(q)) is empty. Now suppose { R i )  is a set of representatives 
of equivalence classes of irreducible representations of H.(q)-so xi lRilz = n!. If any 
such irreducible specializes to a reducible representation then some dimensions are lost, 
therefore specialization is an isomorphism of classes of irreducibles. Thus the irreducible 

0 content at q = 1 determines the H,(q) irreducible content. 
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Note that shapes of different degree may have the same profile (e.g. for n = 3 (7.1,O) 
and (3,2,1) are both pA = (1,1,1)). There is a unique representative shape in each 
isomorphism class of minimum degree given by 

A = (d - 1,d - 1, ,. . , d  - 1,d -2 ,d -2, ..., 
d - 2 , d  - 3, ... , d  - 3, ..., 1 , 1 ,  ... ,1 ,0 ,0 ,  ..., 0) (10) 

where d is the depth of p* and 

card(i : Ai = k - 11 = (p*)k 

(so IAI  = Cf=,(i - l).p?). 
We will also define a standard representative shape U for each class by 

card[i : vi = k }  = (0")d-k.  (11) 

We will see in the next section that the action in equation (8 )  (for A a standard 
representative shape) is identical to the action of the generators on a pA 9-permutation 
module [SI, which is in tum a block of the sl(n) vertex model representation of H,,(q) 
([16,17] and see review below). The generic irreducible content of such a block is known 
[18], being given by the Littlewood-Richardson rules [lS]. Serendipitously we will be able 
to rederive this result in a relatively simple way. 

4. Polynomial bases for Speeht modules 

Recall the (unnonnalized) q-symmetrizer and q-antisymmetrizer in H.(q): 

where G(S,) is the basis of H.(q) obtained by writing each w E S, as a word of minimal 
length ([( tu))  in permutations ( i  i + 1)  E S, and then replacing (i i + 1) H gi .  

These have the properties 

kn")' = cnl*!Yn: (14) 

(where [n]+! = n:=,(1 - qTp)/(l - 97')) and 

Proof of equation (15). First consider some gi acting on an arbitrary summand of Yi. 
There are two cases to considerdither giG(tu) is of minimum length (and is given by 
G((i i + 1 ) ~ ) ) ;  or the relation g: = (q-' - q)gi + 1 can be used to shorten it: 

(4-' - q)G(w) + G((i i + 1)w) 
G((i i + 1)w) 

l((i i + 1)w) = Z(w) - 1 
I((i i + 1)w) = l (w)  + 1 

giG(w) = 
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so overall the coefficient of G(w) on the left-hand side of giY,' is again one of two cases- 
either the coefficietu comes from shortening some w' (hence q-[@')-l) or from lengthening 
w' plus leaving alone w: 

q-'(w)+l + q-l(w)(q-l -q) 
q-'"-' 

I ( ( :  i + 1)w) = i(w) - 1 
l((i i + 1)w) = i (w)  + 1 

and similarIy for the antisymmetric case. 0 

There is a dualjty between the roles of the two types of operator (under q + -q-'), 
and in fact the normalization we have chosen causes them to exchange their normal roles 
in the q = 1 b i t .  

Propasition 4. For ( i j )  E S, and f a function of n variables such that f = ( i j ) f .  then 

Y i f  =o. 

Proof. It is sufficient to prove that (i i + k ) f  = f implies Y;f = 0. 
We proceed by induction on k.  First suppose f = f('), then 

This establishes the case k = 1 (strictly speaking only for q f f i ,  although these cases can 
also be dealt with). 

Now assume tharf = (i i +m)f implies Y'f = 0 for all i and all m = 1,2,. . . , k- 1. 
Note that iff  = (i i + k ) f  then 

f = ((i i + I)(i + 1 i + k)( i  i + 1))f = (i i + 1) ((i + 1 i + k)( i  i + 1)) f 
and hence 

(i i 4- 1)f = (i + 1 i + k)(( i  i + 1)f) 

so then Y;((i i+ 1)f) = 0 by assumption. But similarly Y ; ( f +  (i i + 1)f) = 0, so finally 
Y'f =o. 

Writing f = z' then if two exponents ai, aj are the same ( i j ) f  = f, so 

Proposition 5. For a E PI" 
Y:z" = 0 unless pa = (1"). 

That is. P;P contains no monomial in which two exponents ai, aj (say) are equal. 
In particular, Y;P1 = 0 unless i n(n - 1)/2 Now consider Y;P(n-')/2. First 

Y,. = 1 - qg, so 

Y;Zl = 4'(2l + ZZ) 
and so 
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&firition (q-Vandemndians). The q-Vandermondian~ [U1 BTC 

These definitions with equations (16) and (17) give 

giV:(q) =W'V:(~). (18) 

N~~ that vfii(q) E pY-1,n-ZdX C - P(n-')/z. For example, the first t a m  in the monomial 
expansion of V,'(q) is z;-'z;f-". . zn-l (i.e. profile (1')). ~ o t e  ~ I S O  that as left H d q )  
modules 

I 

zqY"" "= %V."(q,. (19) 

Whereupon we have: 

Comlhry 5.1. For k > n let A = (k - 1, k - 2, . . . , k - n), then as a left H&) module 

Y;$ E z*v,+(q)( fiz:-n). W) 
i=l 

P r d .  For some z' of shape A let us write X = Yiz' E p+. By proposition 4 

Yi(l+ (ij))? = 0 

so for ?I any (evenhid) permutation of a 

Y,"rb = fx. 
By proposition 5 Y;zC = 0 for $ 4  A, since shapes of depth < n which are lower than A 
in the total order (of partitions of n(k - n) + n(n - 1)/2) must have at least two exponents 
equal. Thus 

Y"+ = zqx, 
But V2(q)(& zf-") E p+ (consider k = n) and, comparing the ccefficients of maxi" 
degree in the first n variables in Y,"V:(q) = [nJ+!V:(q) we get 

Further: 

Defutition 4 (Diagrams for Vandennondimts). More explicitly V,'(q) = V,'(~.ZI, ZZ., . . . , 
zn) and then the tableau Vandmondians are 



7320 P Martin 

and similarly 

and 

.. .. 

and so on. 

DejFnition 5 (Tabeau symmetrizem). Similarly, diagrams as above but with superscripts 
i replaced by a,s denote the elements of H,,(q) obtained by replacing the tableau 

Vandermondians with the corresponding 'translated' (anti)symmetrizers, i.e. V:(q) -+ Y," . 

For example, 

E 

= 1-qgs. 

Let us review the construction of q-permutation blocks and Specht modules [9]. In 
order to do this we need to define some more special elements of H&). Let p + n have 
depth p', = d ,  then with A: the product of symmetrisers defined by 

we have: 

Dejinnition 6 (q-permutation block 19.181). The left module P# = H,(q)A; is the q- 
permutation block associated with p. 

Proposition 6. As left H.(q) modules, Pp is isomorphic to E in case the profile of A is 
p' =p. 

Proof: The induced representations are identical in a canonical basis [ 181 if h is standard. 
In particular compare equation (8) (for the lowest state) with equation (21). 

Let 12; be the product of symmehisers defined by 
s 

Afr = (22) 

(in the illustration pi = pk, of course this need not be true in general) and let A; be the 
tableau Vandermondians obtained from the tableaux in equations (21) and (22) respectively. 
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Definition 7 (q-Spechr module [S, 9,181). The left module H,(q)AS,P, is the q-Specht 
module associated with p. 

Each such module is a simple Hn(q) module as we will see, and well defined in any 
specialization. Now by proposition 5: 

Proposition 7. For p k n 

A;z' = 0 (23) 

A>z" o( A:# (24) 

unless (pa)' P p'. Further, if a is of minimal degree for profile pa (equation (IO)) then 

that is 

A;aP+ = ZqA> 

and if the shape of a is standard (equation (1 1)) then 

that is 

Note that equation (23) uses an ordering on profires (cf the ordering on shapes in 
proposition 1). 

Proof. Explicitly 

Let the depth of pa be (p")', = d .  In order for the first factor on the right-hand side to be 
non-vanishing the exponents must be some permutation of pi distinct numbers chosen from 
the d distinct exponents. If d < pi this is not possible. If d > pi then (p")' b p' and there 
is nothing to prove. Note that if the exponents are a permutation of IO, 1,2,. . . , p{ - 1) 
then the factor is proportional to Vz by corollary 5.1. 

It remains to consider the case d = p', . Suppose that the first factor is in fact non- 
vanishing. In  order for the second factor to be non-vanishing the exponents there must be 
some permutation of pi distinct numbers. Since we have already factored out p{ distinct 
exponents we have an effective profile obtained by deleting the first column (in the diagram 
sense) from pa. Thus the distinct exponents must be chosen from (pa% possibilities. If 
(p); < & this is not possible. If (p); > pi then (p)'. p' and there is nothing to prove. 
If the exponents are a permutation of (0,l.Z.. . . , p; - 1)-the minimal degree case-then 
the factor is proportional to Vt (appropriately translated) by corollary 5.1. If the exponents 
are a permutation of (p; - A,. . . , pi - 2, pi - 1)-the standard case-then the factor is 
proportional to VA(n;il z j )  (translated by z; + zite;) by corollary 5.1. 

k 
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In general if (px = p;  we must consider the t h i i  factor similarly, and so on. Iterating, 
we obtain equations (W), (24) and (26). 

Finally, consider the action of A; on a monomial zb (say) in q, of shape lower than QO 

in the total order (in the case of U of minimal degree for its profile). Then the multiplicity of 
some exponent is lower in b than in a, but since at minimal degree every exponent between 
this one and zefu is represented, the multiplicity of some lower exponent is necessarily 
higher in b. Correspondingly at some factor there will not be enough distinct exponents in 

O 

It is proved in [18] that A",& is onedimensional for any p I- n. In general if 
X, Y E Zf&) and XH,(q)Y isone-dimensional then Hn(q)XHn(q)Y is an indecomposable 
left module [19], hence the Specht module HnA;Pr, is a generic irreducible left module 
(distinct for each p ,  with Pn giving a complete set of irreducibles up to equivalence). It then 
follows h m  proposition 6 that for each h the space A>P? is one-dimensional (and this is 
confirmed explicitly in the "imum degree and standard cases by proposition 7, since Py 
is a quotient of e)?. Thus A>@ generates a polynomial basis for the corresponding left 
Specht mcdule-as indeed does A:AF+ in minimum and standard cases. By equation (25) 
the polynomial A$ in particular generates thii basis. For example 

A&, = ( n (zi -q2zj)) n (zi -q2zj). (28) 

b, giving A;zb = 0. Quation (27) foUows similarly. 

I<(<&& mtl<i<j<2m 

Similarly 

n (zi - q z z j ) )  n (2; -qzzj). (2% 

An isomorphic representation is induced using Ahm,,) ng2:2zj (from equation (27)). 
reproducing (with equation (28)) the two examples found by Davies et d [I]. Equivalently, 
note for example that a = (3,3,2,2,1.1,0) and (3,2,2,1,1,0,0) have the same profile 
(is. (Z3, I)), and that in both cases there are no shapes lower in the total order with profiles 
higher (or equal) in the total order of their conjugates. 

I<iCj<"+l m+Z<i<j<Yntl  

More generally, for example 

and so on. 
A complete basis is generated from A: by acting with (gj) as in the following example. 

c 

We consider pA = (Z3, 1) and Write (ij . . .k) for g i g j . .  . Then a basis is p+ 7 (4) = pt (34) = Bt 
t A straightforward generalization of the proof of proposition 7 establishes hat h e  Lialewood-Richardson rules 
for the Spechf module content of pumuiation blocks 19. I51 continue to apply on generalizing froom q I 1 to q 
indetemkmlc 
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(54) = EP+ 
(4354) =B+ 

(654) = Di 
U 

(2354) = 

(354) = 

(6534) = 

(7.34) =p+ 
U 

(24354) = (64354) = (26354) = 

(246354) = m+ 
Finally, the algebra H,(q)  is isomorphic to its opposite (see the defining relations), so 

an action from the right may be defined similarly to equation (2). Note that, in particular, 
P can be regarded as a left or right H,(q) module, but it is not a bimodule. For example, 
in the S, case 

(12)(21(23)) = (WZl = 22 but ((12)21)(23) = Zz(23) = 23. 

We have determined the structure of the ring of n-vsriable polynomials as a Hecke 
algebra module by identifying various submodules with Hecke modules of known smcture. 
Our new realization of these (q-permutation) modules has enabled us to rederive their 
shucture in a relatively simple way, and in particular to construct polynomial bases for all 
irreducible (q-Specht) modules. 
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